Contrasting Stabilities of Classical and Bridged Pyramidal $\mathrm{Si}_{3} \mathrm{H}_{3} \mathrm{X}$ Molecules ($\mathrm{X}=\mathrm{BH}^{-}, \mathrm{CH}, \mathrm{N}, \mathrm{NH}^{+}, \mathrm{NO}, \mathrm{SiH}, \mathrm{P}, \mathrm{PH}^{+}$, and PO)

Eluvathingal D. Jemmis* and Gantasala Naga Srinivas
Contribution from the School of Chemistry, University of Hyderabad, Hyderabad 500 046, India

Received October 5, 1995. Revised Manuscript Received January 16, 1996^{\otimes}

Abstract

Trigonal-pyramidal $\mathrm{Si}_{3} \mathrm{H}_{3} \mathrm{X}$ systems have been studied at HF/6-31G*, MP2(FC)/6-31G*, and Becke3LYP/ $6-31 \mathrm{G}^{*}$ levels. The classical trigonal-pyramidal structure (5) is a higher order stationary point for $\mathrm{X}=\mathrm{BH}^{-}, \mathrm{CH}$, $\mathrm{NO}, \mathrm{SiH}, \mathrm{P}, \mathrm{PH}^{+}$, and PO , whereas it is a minima for $\mathrm{X}=\mathrm{N}$ and NH^{+}, at the MP2(FC)/6-31G* level. An alternative pyramidal structure ($\mathbf{6}, C_{3 v}$) with three $\operatorname{SiHSi} 3 \mathrm{c}-2 \mathrm{e}$ bonds is minima, lower in energy than 5 by $47.7\left(\mathrm{X}=\mathrm{BH}^{-}\right)$, $39.1(\mathrm{X}=\mathrm{CH})$, $31.7(\mathrm{X}=\mathrm{N})$, $25.0\left(\mathrm{X}=\mathrm{NH}^{+}\right)$, $20.6(\mathrm{X}=\mathrm{SiH})$, $20.7(\mathrm{X}=\mathrm{P})$, $16.1\left(\mathrm{X}=\mathrm{PH}^{+}\right)$, and $18.2(\mathrm{X}=$ PO) $\mathrm{kcal} / \mathrm{mol}$. Isolobal analogy connects 6 with various triply hydrogen bridged pyramidal structures in organometallics.

Introduction

There is a well-developed chemistry based on the smallest carbocyclic π-ligand $\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{3}{ }^{+} .{ }^{1-3}$ Derivatives of $\mathbf{1}$ with main group and transition metal fragments (e.g. $\mathrm{C}_{4} \mathrm{R}_{4}\left(T_{d}\right)$ and $\mathrm{C}_{3} \mathrm{R}_{3}-$ $\left.\mathrm{Co}(\mathrm{CO})_{3}\right)$ are available in the literature. ${ }^{1,2}$ An all-boron analog of cyclopropenyl cation $\mathrm{B}_{3} \mathrm{H}_{6}{ }^{+}$is calculated to be a stable species. ${ }^{4}$ Theoretical studies on pyramidal structures ($\mathbf{2}, C_{3 v}$)

based on the $\mathrm{B}_{3} \mathrm{H}_{6}{ }^{+}$ligand have indicated them to be stable species on their potential energy surfaces. ${ }^{5}$ There are no reports on trigonal-pyramidal structures based on $\mathrm{Si}_{3} \mathrm{H}_{3}{ }^{+}$, the trisilacyclopropenyl cation, except for the studies on tetrasilatetrahedranes. ${ }^{6}$ The cation $\mathrm{Si}_{3} \mathrm{H}_{3}{ }^{+}$, found in the gas phase, is

[^0]calculated to be more stable as trisilacyclopropenium ion (3, $D_{3 h}$) with 2π electron delocalization. ${ }^{7,8}$

An alternative triply hydrogen bridged structure $\left(\mathbf{4}, C_{3 v}\right)$ is also found to be a minimum for $\mathrm{Si}_{3} \mathrm{H}_{3}{ }^{+}$, but it is $42.0 \mathrm{kcal} / \mathrm{mol}$ higher in energy than $\mathbf{3}$ at the MP2(FC)/6-31G* level. ${ }^{8}$ There are reasons to believe that the $\mathrm{Si}_{3} \mathrm{H}_{3}$ ligand should be a more appropriate π-ligand than $\mathrm{C}_{3} \mathrm{H}_{3}$ on the basis of ring size. $\mathrm{C}_{5} \mathrm{H}_{5}$ is an ideal η^{5} ligand in chemistry because of the ideal claw size of the π framework of the $\mathrm{C}_{5} \mathrm{H}_{5}$ ring for a range of caps from main group and transition metal fragments. ${ }^{9}$ The cyclopropenyl cation provides a much smaller span of orbitals. This is compensated to an extent by the large out-of-plane bending of the ring substituents away from the capping group observed in $\mathrm{C}_{3} \mathrm{R}_{3}{ }^{+} \pi$-complexes. ${ }^{2}$ The longer SiSi bond length in $\mathrm{Si}_{3} \mathrm{H}_{3}{ }^{+}$ should reduce this orbital mismatch considerably. The bridged structure, 4, has an even longer SiSi distance. This brings in the interesting question of the relative stabilities of the classical structure 5 and the bridging structure 6. Structure $\mathbf{5}$ can be

considered as a homolog of $\mathbf{1}$, whereas structure $\mathbf{6}$ can be derived

[^1]Table 1. The Total Energies (au) and Zero-Point Energies (ZPE, kcal/mol) of Structures $\mathbf{5}$ and $\mathbf{6}$ for Various Caps at HF/6-31G*, MP2(FC)/ 6-31G*, and Becke3LYP/6-31G* Levels

HF/6-31G*					MP2(FC)/6-31G*				Becke3LYP/6-31G*			
	5		6		5		6		5		6	
cap	total energy	ZPE										
BH^{-}	-893.58893	22.8	-893.65458	24.1	-893.93912	21.2	-894.01933	24.0	-895.62773	20.7	-895.70808	22.8
CH	-906.75329	26.3	-906.82467	27.4	-907.14051	24.3	-907.20677	26.9	-908.83666	23.3	-908.91038	25.8
N	-922.78286	19.9	-922.84882	19.2	-923.21175	18.1	-923.26361	19.0	-924.91116	17.5	-924.977621	18.0
NH^{+}	-923.17848	28.0	-923.22223	28.6	-923.58258	25.7	-923.62580	27.9	-925.29129	25.1	-925.34796	26.9
NO	-997.51493	20.4	-997.58465	21.0			-998.17220	20.5	-1000.04626	19.1	-1000.07783	18.6
SiH	-1157.82123	23.0	-1157.84049	22.7	-1158.14842	20.5	-1158.18403	22.3	-1160.23571	20.3	-1160.28032	21.2
P	-1209.10052	18.8	-1209.12337	18.5	-1209.45535	16.8	-1209.49043	18.2	-1211.54589	16.5	-1211.59051	17.2
PH^{+}	-1209.41746	23.5	-1209.43578	23.5	-1209.75711	21.5	-1209.78535	23.2	-1211.85828	20.8	-1211.90181	22.0
PO	-1283.89647	20.7	-1283.92219	20.4	-1284.43948	18.1	-1284.47116	19.9	-1286.71660	18.0	-1286.76027	18.9

from 2 by replacing the BH group by Si using the isolobal analogy between BH and $\mathrm{Si}(7) .{ }^{10}$

The triply hydrogen bridged trigonal-pyramidal structures with metallacycles are known in the literature. For example, $\mathbf{6 b}\left(C_{3 v}\right)$ can be related to $(\mu-\mathrm{H})_{3} \mathrm{Fe}_{3}(\mathrm{CO})_{9}\left(\mu_{3}-\mathrm{CMe}\right)(\mathbf{8})$ through

isolobal analogy. ${ }^{11}$ We present here the results of a theoretical study on a series of pyramidal $\mathrm{Si}_{3} \mathrm{H}_{3}(\mathrm{X})$ compounds with BH^{-} $(5 \mathbf{a}, \mathbf{6 a}), \mathrm{CH}(5 \mathbf{b}, \mathbf{6 b}), \mathrm{N}(\mathbf{5 c}, \mathbf{6 c}), \mathrm{NH}^{+}(5 d, 6 d)$, $\mathrm{NO}(5 e, 6 e)$, $\mathrm{SiH}(\mathbf{5 f}, \mathbf{6 f}), \mathrm{P}(\mathbf{5 g}, \mathbf{6 g}), \mathrm{PH}^{+}(\mathbf{5 h}, \mathbf{6 h})$, and $\mathrm{PO}(\mathbf{5 i}, \mathbf{6 i})$ as capping groups (X) which support our contention that there is more flexibility for 4 in ring-cap bonding. H-bridged structures 6 are calculated to be more favorable than the classical, $\mathbf{5}$, in all cases.

Method of Calculation

Geometries $\mathbf{5 a}-\mathbf{5 i}$ and $\mathbf{6 a}-\mathbf{6 i}$ were optimized under $C_{3 v}$ symmetry (except 5f, which has T_{d} symmetry) at the HF/6-31G* level. ${ }^{12,13}$ The effect of electron correlation is obtained by further optimizing the structures at the MP2(FC)/6-31G* level. ${ }^{14}$ The density functional calculations at the Becke3LYP/6-31G* level were also done for comparison of relative energies. ${ }^{15}$ The nature of the stationary points was determined by analytical evaluation of the harmonic force constants and vibrational frequencies. ${ }^{16}$ All the calculations were carried out

[^2]Table 2. Relative Energies ${ }^{a}(\mathrm{kcal} / \mathrm{mol})$ of Structures 5 and 6 at HF/6-31G*, MP2(FC)/6-31G*, and Becke3LYP/6-31G* Levels (Values in Parentheses Are the Number of Imaginary Frequencies)

HF/6-31G*			MP2(FC)/6-31G*		Becke3LYP/6-31G*	
cap	5	6	5	6	5	6
BH^{-}	40.0(2)	0.0(0)	47.7(2)	0.0(0)	48.6(2)	0.0(0)
CH	43.8(0)	0.0(0)	39.1(2)	0.0(0)	44.0(2)	0.0(0)
N	42.0(0)	0.0(0)	31.7(0)	0.0(0)	41.3(0)	0.0(0)
NH^{+}	26.9(0)	0.0(0)	25.0(0)	0.0(0)	34.0(0)	0.0(0)
NO	43.2(2)	0.0(0)	67.3(0) ${ }^{\text {b }}$	0.0(0)	20.3(2)	0.0(0)
SiH	12.4(0)	0.0(0)	20.6(2)	0.0(0)	27.2(0)	0.0(0)
P	14.6(0)	0.0(0)	20.7(2)	0.0(0)	27.4(0)	0.0(0)
PH^{+}	11.5(0)	0.0(0)	16.1(2)	0.0(0)	26.3(2)	0.0(0)
PO	16.4(0)	0.0(0)	18.2(2)	0.0(0)	26.6(0)	0.0(0)

${ }^{a}$ The relative energies are calculated after scaling the zero-point energy by 0.89 for HF/6-31G* and Becke3LYP/6-31G* levels and by 0.95 for the MP2(FC)/6-31G* level (ref 12). ${ }^{b}$ The structure corresponds to 9 (ref 37).
using the GAUSSIAN92 program package. ${ }^{17}$ The total and relative energies obtained from these calculations are given in Tables 1 and 2. Important geometrical parameters are listed in Tables 3 and 4. The MP2(FC)/6-31G* results are used in the discussion unless otherwise specified. These are qualitatively similar to those obtained at other levels.

Results and Discussion

The H-bridged structure 6 is calculated to be lower in energy than the classical structure 5 at all three levels for all ring-cap combinations (Table 1). The stability of 6 over 5 ranges from $47.7 \mathrm{kcal} / \mathrm{mol}$ for X $=\mathrm{BH}^{-}$to $16.1 \mathrm{kcal} / \mathrm{mol}$ for $\mathrm{X}=\mathrm{PH}^{+}$. Similar trends are seen at the HF and Becke3LYP levels (Table 2). Structure 6 is found to be a minimum with all the caps. However, this is not true for the classical structure 5 , which is a higher order saddle point for $\mathrm{BH}^{-}, \mathrm{CH}, \mathrm{SiH}, \mathrm{P}$, PH^{+}, and PO caps. Structure 5 is calculated to be a minimum for NH^{+} and N . The caps $\mathrm{BH}^{-}, \mathrm{CH}$, and PH^{+}followed the same trend at the Becke3LYP level, whereas structures with SiH, P, and PO caps are shown to be minimum at this level. The classical structure with NO cap (5e) collapses to $\mathbf{9}\left(C_{3 v}\right)$ on optimization at the MP2(FC) level. On the other hand the triply hydrogen bridged structure $\mathbf{6 e}$ is a minimum. The classical structure 5f, with SiH cap (one of the nine caps considered in the present study), is tetrasilatetrahedrane. Previous calculations on $\mathrm{Si}_{4} \mathrm{H}_{4}$ have shown that the tetrasilatetrahedrane is a local minimum at the HF/6-31G* level on the potential energy surface of $\mathrm{Si}_{4} \mathrm{H}_{4}{ }^{6}{ }^{6}$ However, Nagase et al. predicted that two SiSi bonds in $\mathbf{5 f}$ can be broken without a barrier to form a four-membered ring isomer at higher levels. ${ }^{18}$ In the present study the tetrasilatetrahedrane is found to be a

[^3]Table 3. Important Geometrical Parameters for $\mathrm{Si}_{3} \mathrm{H}_{3} \mathrm{X}(5)$ at HF/6-31G*, MP2(FC)/6-31G*, and Becke3LYP/6-31G* Levels ${ }^{a}$

HF/6-31G*					MP2(FC)/6-31G*				Becke3LYP/6-31G*			
cap	X -Si	$\mathrm{Si}-\mathrm{Si}$	$\mathrm{Si}-\mathrm{H}$	$\theta_{1}{ }^{\text {b }}$	X-Si	$\mathrm{Si}-\mathrm{Si}$	$\mathrm{Si}-\mathrm{H}$	$\theta_{1}{ }^{\text {b }}$	X-Si	$\mathrm{Si}-\mathrm{Si}$	$\mathrm{Si}-\mathrm{H}$	$\theta_{1}{ }^{\text {b }}$
BH^{-}	2.072	2.285	1.479	20.4	2.051	2.289	1.491	21.1	2.078	2.298	1.494	22.7
CH	1.900	2.257	1.465	-7.8	1.904	2.337	1.489	-31.7	1.908	2.430	1.504	-41.2
N	1.808	2.238	1.467	-18.0	1.861	2.286	1.486	-29.5	1.843	2.308	1.492	-30.9
NH^{+}	1.869	2.249	1.458	-15.5	1.886	2.298	1.477	-23.7	1.887	2.308	1.482	-25.0
NO	1.824	2.267	1.462	-18.0					1.975	2.484	1.500	-49.9
SiH	2.314	2.314	1.464	19.5	2.315	2.315	1.478	19.5	2.327	2.327	1.479	19.5
P	2.292	2.247	1.463	4.4	2.304	2.256	1.479	-2.6	2.325	2.266	1.481	-0.6
PH^{+}	2.266	2.301	1.457	2.9	2.265	2.318	1.475	-2.3	2.284	2.332	1.477	-2.8
PO	2.247	2.319	1.462	15.8	2.272	2.333	1.478	18.6	2.287	2.343	1.499	18.4

[^4] indicates that the hydrogens are bent away from the cap (X).

Table 4. Important Geometrical Parameters for $\mathrm{Si}_{3} \mathrm{H}_{3} \mathrm{X}$ (6) at HF/6-31G*, MP2(FC)/6-31G*, and Becke3LYP/6-31G* Levels ${ }^{a}$

HF/6-31G*					MP2(FC)/6-31G*				Becke3LYP/6-31G*			
cap	X-Si	$\mathrm{Si}-\mathrm{Si}$	$\mathrm{Si}-\mathrm{H}$	$\theta_{2}{ }^{\text {b }}$	X-Si	$\mathrm{Si}-\mathrm{Si}$	$\mathrm{Si}-\mathrm{H}$	$\theta_{2}{ }^{\text {b }}$	X-Si	$\mathrm{Si}-\mathrm{Si}$	$\mathrm{Si}-\mathrm{H}$	$\theta_{2}{ }^{\text {b }}$
BH^{-}	2.008	2.618	1.714	35.2	1.988	2.558	1.715	35.1	2.006	2.614	1.731	35.5
CH	1.885	2.629	1.700	33.9	1.884	2.595	1.698	33.3	1.897	2.635	1.714	33.5
N	1.793	2.563	1.714	35.0	1.829	2.534	1.706	34.7	1.825	2.565	1.725	34.7
NH^{+}	1.871	2.695	1.683	31.8	1.879	2.678	1.684	30.9	1.889	2.712	1.699	30.9
NO	1.807	2.644	1.715	33.3	1.838	2.626	1.706	32.4	1.878	2.654	1.713	32.9
SiH	2.317	2.833	1.695	29.6	2.283	2.715	1.695	30.0	2.316	2.822	1.711	30.0
P	2.265	2.694	1.684	32.2	2.257	2.619	1.686	32.1	2.286	2.696	1.702	32.1
PH^{+}	2.276	2.926	1.697	27.5	2.245	2.842	1.695	27.2	2.283	2.923	1.712	27.3
PO	2.245	2.827	1.694	29.6	2.230	2.721	1.692	29.5	2.271	2.821	1.709	29.7

${ }^{a}$ Distances are in angstroms and angles are in degrees. ${ }^{b} \theta_{2}$ represents the angle between the Si_{3} plane and SiHSi plane.
second-order saddle point at the MP2(FC) level. The two imaginary frequencies are found to follow the path suggested by Nagase et al. to break the two SiSi bonds. However, $\mathbf{5 f}$ is calculated to be a minimum at the Becke3LYP level supporting the HF level of calculations. It was also indicated that silyl substitution can stabilize 5f. ${ }^{19}$ The tetrasilatetrahedrane $\left(\mathrm{Si}_{4} \mathrm{R}_{4}\right)$ has been synthesized with a "super silyl" group $\left(\mathrm{R}=t\right.$ - $\mathrm{Bu} \mathrm{u}_{3} \mathrm{Si}$). ${ }^{20}$ The $C_{3 v}$ isomer of $\mathrm{Si}_{4} \mathrm{H}_{4}, \mathbf{6 f}$, is calculated to be $20.6 \mathrm{kcal} / \mathrm{mol}(12.4$ and $27.2 \mathrm{kcal} / \mathrm{mol}$ at the HF and Becke3LYP levels, respectively) more stable than the T_{d} arrangement, $\mathbf{5 f}$. But $\mathbf{6 f}$ is $28.7 \mathrm{kcal} / \mathrm{mol}$ higher in energy than the lowest energy isomer ($\mathbf{1 0}$, C_{s}), reported in the literature for $\mathrm{Si}_{4} \mathrm{H}_{4} .^{6 e, 21}$ The tetrahedral structure observed for $\mathrm{Si}_{4} \mathrm{R}_{4}$ experimentally points to the effect of substituents in controlling the structures; the propensity for bridging does not seem to go beyond hydrogens.

The SiSi distances (Table 3) in the classical structure 5 are in the range of single bonds $\left(2.332 \AA\right.$ in trisilacyclopropane $\left(\mathbf{1 1}, D_{3 h}\right)$ and $2.334 \AA$ in disilane). ${ }^{22-24}$ The bridged structure 6 has considerably

[^5]shortened SiSi distances (Table 4) compared to the triply hydrogen bridged trisilacyclopropane $\left(\mathbf{1 2}, C_{3 v}\right), \mathrm{Si}_{3} \mathrm{H}_{6}(3.080 \AA) .{ }^{23}$

11

12

NBO analysis shows the bonding in $\mathbf{5}$ to be classical. ${ }^{25}$ The triply hydrogen bridged structure $\mathbf{6}$ has three each of $2 \mathrm{c}-2 \mathrm{e}$ XSi bonds, the SiHSi $3 \mathrm{c}-2 \mathrm{e}$ bond, and lone pairs on the silicon atom of the $\mathrm{Si}_{3} \mathrm{H}_{3}$ ring. The geometrical constraints in 5 force bent bonds between the cap (X) and $\mathrm{Si}_{3} \mathrm{H}_{3}$ ring (13). The deviation of the XSi bonds from the internuclear axis $\left(\theta_{3}\right)$ at X in $\mathbf{5}$ and $\mathbf{6}$ obtained from the NBO analysis is listed in Table 5. θ_{3} is smaller in 6 compare to 5 . That is the XSi bond becomes more directed in $\mathbf{6}$ leading to better bonding. The NBO analysis also reveals that the lone pair on divalent Si in 6 is predominantly of s character ($\sim 73 \%$). This leaves maximum pcharacter for XSi bonds $(\sim 86 \%)$. Since the lone pair on Si has greater s character, it looses the directionality and is in the plane of the Si_{3} ring rather than in the anticipated direction, away from the cap. Thus the coplanarity of lone pairs on the Si_{3} ring pushes the p_{π} orbital toward X , resulting in better overlap between X and the $\mathrm{Si}_{3} \mathrm{H}_{3}$ ring. ${ }^{26}$ This type of arrangement is absent in $\mathbf{5}$, leading to poor overlap between X and the $\mathrm{Si}_{3} \mathrm{H}_{3}$ ring. The Mulliken overlap population between X and Si increases in going from 5 to $\mathbf{6}$ for all $\mathrm{X}\left(0.210,0.388\right.$ for BH^{-};

[^6]Table 5. The Bond Bending Angle (θ_{3}, the Deviation of Hybrid Orbital from the XSi Axis) (in deg) at X at the HF/6-31G*// MP2(FC)/6-31G* Level from NBO Analysis

cap	$\theta_{3}(\mathbf{5})$	$\theta_{3}(\mathbf{6})$
BH^{-}	29.7	22.8
CH	25.7	18.3
N	19.6	14.5
NH^{+}	25.5	15.3
NO		14.5
SiH	32.6	25.4
P	25.1	18.8
PH^{+}	32.6	23.0
PO	32.0	23.9

0.206, 0.309 for $\mathrm{CH} ; 0.180,0.253$ for $\mathrm{N} ; 0.053,0.144$ for $\mathrm{NH}^{+} ;-0.001$, 0.271 for $\mathrm{SiH} ; 0.132,0.248$ for $\mathrm{P} ;-0.019,0.178$ for PH^{+}; and 0.011 , 0.240 for PO). These changes in overlap population also indicate the better bonding between X and $\mathrm{Si}_{3} \mathrm{H}_{3}$ ring in $\mathbf{6}$ compared to 5 .

The bonding in 5 and $\mathbf{6}$ can also be explained by the six interstitial electron rule for three-dimensional delocalization in pyramidal systems. ${ }^{3}$ According to this rule, the $\mathrm{Si}_{3} \mathrm{H}_{3}$ ring provides 3π electrons and the cap, X, provides three electrons leading to a total of six electrons to fill the three bonding combinations obtained from the ring and cap orbitals. All X groups considered here are selected on the basis of this interstitial electron rule. The caps $\mathrm{BH}^{-}, \mathrm{CH}, \mathrm{N}$, and NH^{+}are selected from the previous theoretical calculations on carbocyclic pyramidal structures. ${ }^{3} \mathrm{P}, \mathrm{PH}^{+}$, and SiH are selected to see the effect of heavier analogs. The report on interaction between CO and cyclobutadiene ${ }^{27}$ suggested the possibility of nitrosyl (NO) and phosphoryl (PO) groups as caps in the present study. The bonding with these caps (NO and PO) is due to the degenerate π-orbitals of $\mathrm{Si}_{3} \mathrm{H}_{3}$ and the degenerate π^{*}-orbitals of NO and PO. Therefore, the $\mathrm{N}-\mathrm{O}$ (6e: $1.396 \AA$) and $\mathrm{P}-\mathrm{O}(\mathbf{5 i}: 1.512 \AA, 6 \mathrm{i}: 1.517 \AA$) distances in $\mathbf{5}$ and 6 are close to their respective single bond distances. ${ }^{28}$ The changes in $\mathrm{B}-\mathrm{H}, \mathrm{C}-\mathrm{H}, \mathrm{N}-\mathrm{H}, \mathrm{Si}-\mathrm{H}$ (cap), and $\mathrm{P}-\mathrm{O}$ bond lengths are found to be minimal between structures 5 and 6. ${ }^{29}$ The negative θ_{1} (bending of terminal $\mathrm{Si}-\mathrm{H}$ bonds toward the cap) in $\mathbf{5 b}, \mathbf{5 c}, \mathbf{5 d}, \mathbf{5 g}$, and $\mathbf{5 h}$ (Table 3) can be explained by the concept of the compatibility of orbitals in overlap. ${ }^{3}$ The relatively less diffuse p_{π}-orbital on the cap (X) pushes the H_{t} toward the cap for better interaction.

Structure 6 is related to the triply hydrogen bridged isomer of $\mathrm{Si}_{3} \mathrm{H}_{6}$ (12). ${ }^{23}$ Bridged structure $\mathbf{1 2}$ is calculated to be $84.0 \mathrm{kcal} / \mathrm{mol}$ higher in energy than the classical structure 11. Since the three terminal hydrogens are directed toward a converging point along $\mathrm{SiH}_{\mathrm{t}}$ axes in 12, these hydrogens can be replaced by a 3-electron donor cap (X) (similar to the replacement of nonbonded hydrogen repulsions in [10]annulene by a CH_{2} bridge ${ }^{30}$) leading to structure 6. In contrast, the classical structure of $\mathrm{Si}_{3} \mathrm{H}_{6}$ (11) has divergent hydrogens. The advantage in the formation of the pyramidal molecules with capping X provided by the SiH bond directions in $\mathbf{1 2}$ in comparison to those in $\mathbf{1 1}$ is reflected in the uniformly lower energy of $\mathbf{6}$.

Similarly the "isosynaptic analogy" connects the structural patterns in silicon chemistry with organometallic chemistry. ${ }^{31}$ Thus using this analogy, we can equate $(\mu-\mathrm{H})_{3} \mathrm{Fe}_{3}(\mathrm{CO})_{9}\left(\mu_{3}-\mathrm{CMe}\right),{ }^{11}(\mu-\mathrm{H})_{3} \mathrm{Os}_{3}(\mathrm{CO})_{9}-$ $\left(\mu_{3}-\mathrm{CX}\right)\left(\mathrm{X}=\mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{Cl}\right),{ }^{32}(\mu-\mathrm{H})_{3} \mathrm{Co}_{3} \mathrm{Cp}^{*}\left(\mu_{3}-\mathrm{CMe}\right),{ }^{33}$ and $(\mu-\mathrm{H})_{3}-$

[^7]Table 6. Energy of the Reaction $\left(\Delta E_{1}\right)$ for Eq 1 and ΔE_{2} for Eq 2 at the MP2(FC)/6-31G* Level

cap	$\Delta E_{1}(\mathrm{kcal} / \mathrm{mol})$	$\Delta E_{2}(\mathrm{kcal} / \mathrm{mol})$
BH^{-}	-89.7	-129.5
CH	-81.1	-120.9
N	-73.7	-113.5
NH^{+}	-67.1	-106.8
SiH	-62.7	-102.5
P	-62.7	-102.5
PH^{+}	-58.1	-97.9
PO	-60.2	-100.0

$\mathrm{Os}_{3}(\mathrm{CO})_{9}\left(\mu_{3}-\mathrm{CBCl}_{2}\right)^{34}$ with $\mathbf{6 b}$ and $(\mu-\mathrm{H})_{3} \mathrm{Os}_{3}(\mathrm{CO})_{9}\left(\mu_{3}-\mathrm{BCO}\right)^{35}$ with $\mathbf{6 a}$.
The low relative energies of $\mathbf{5}$ and $\mathbf{6}$ hide the enormous advantage of the triply bridging 4 in interacting with X^{-}. Even though 4 is less stable than 3, $\mathbf{6}$ obtained by complexing $\mathbf{4}$ and X^{-}is more favorable than 5 (eq 1, Table 6). The strain energies involved in going from 12

to $\mathbf{6}$ and from $\mathbf{1 1}$ to 5 are not the same. An estimate of their difference is obtained from eq 2. The high exothermicity of this equation is also

a reflection of the increased strain in $\mathbf{5}$ in relation to $\mathbf{6}$. Thus the classical trigonal-pyramidal structure (5) is found to be relatively more strained compared to the triply hydrogen bridged structure $\mathbf{6}$. The $\mathrm{X}-\mathrm{Si}_{3} \mathrm{H}_{3}$ binding is more favorable in $\mathbf{6}$. In fact structure $\mathbf{6}$ is more favorable than 5, not only for $\mathrm{Si}_{4} \mathrm{H}_{4}$ but also for $\mathrm{Ge}_{4} \mathrm{H}_{4}$. The triply H -bridged $\mathrm{Ge}_{4} \mathrm{H}_{4}$ is calculated to be $57.6 \mathrm{kcal} / \mathrm{mol}$ more stable than the classical structure at the Becke3LYP/LANL1DZ level. ${ }^{36}$ The classical tetrahedrane structure is a higher order saddle point for $\mathrm{Ge}_{4} \mathrm{H}_{4}$.

[^8]Other heavier analogs are expected to follow this trend. Therefore the pyramidal compounds (6) should be attractive synthetic targets.

Conclusions

Calculations at the HF/6-31G*, MP2(FC)/6-31G* and Becke3LYP/6-31G* levels show the following: The classical pyramidal structure is a second-order stationary point for all 5 except for $\mathrm{X}=\mathrm{N}$ and NH^{+}at the MP2(FC) level. The $C_{3 v}$ alternatives (6) are minima and lower in energy than 5. Structure 6 is related to $\mathrm{B}_{3} \mathrm{H}_{6} \mathrm{X}$ through isolobal analogy and
(36) (a) The basis set LANL1DZ uses the Dunning-Huzinaga valence double- ζ on hydrogen and Los Alamos effective core potentials plus double- ζ on Ge: Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 270, 299. Wadt, W. R.; Hay, P. J. J. Chem. Phys. 1985, 82, 284. (b) The total energy for triply hydrogen bridged $C_{3 v}$ structure of $\mathrm{Ge}_{4} \mathrm{H}_{4}$ is -17.42525 au at the Becke3LYP/LANL1DZ level.
(37) The MP2(FC)/6-31G* energy for structure 9 is -998.16338 au and the zero-point energy is $85.5 \mathrm{kcal} / \mathrm{mol}$.
to triply hydrogen bridged pyramidal structures in organometallics through isosynaptic analogy. The isodesmic equation between X^{-}and $\mathrm{Si}_{3} \mathrm{H}_{3}{ }^{+}$has shown that ring-cap interaction in $\mathbf{6}$ is better than that in 5 . Similarly, eq 2 shows that $\mathbf{6}$ is relatively less strained than 5.

Acknowledgment. E.D.J. thanks CSIR and DST, New Delhi, for research grants. G.N.S. acknowledges UGC, New Delhi, for financial support. We thank the University of Hyderabad Computer Center for computational facilities and Prof. P. v. R. Schleyer for bringing to our notice ref 31 and his own unpublished calculations on $\mathrm{Si}_{4} \mathrm{H}_{4}$ performed in 1989. The help of Professors J. Leszczynski and Mike McKee in DFT calculations is acknowledged.

JA9533858

[^0]: ${ }^{\otimes}$ Abstract published in Advance ACS Abstracts, April 1, 1996.
 (1) (a) Maier, G.; Pfriem, S.; Schafer, U.; Matusch, R. Angew. Chem., Int. Ed. Engl. 1978, 17, 520. (b) Bally, T.; Masamune, S. Tetrahedron 1980, 36, 343. (c) Maier, G. Angew. Chem., Int. Ed. Engl. 1988, $27,309$.
 (2) Chiang, T.; Kerber, R. C.; Kimball, S. D.; Lauher, J. W. Inorg. Chem. 1979, 18, 1687 and references therein.
 (3) (a) Jemmis, E. D.; Schleyer, P. v. R. J. Am. Chem. Soc. 1982, 104, 4781. (b) Jemmis, E. D. J. Am. Chem. Soc. 1982, 104, 7017.
 (4) (a) Jemmis, E. D.; Subramanian, G.; Srinivas, G. N. J. Am. Chem. Soc. 1992, 114, 7939. (b) Korkin, A. A.; Schleyer, P. v. R.; McKee, M. L. Inorg. Chem. 1995, 34, 961.
 (5) Jemmis, E. D.; Subramanian, G.; Srinivas, G. N. Inorg. Chem. 1994, 33, 2317.
 (6) (a) Clabo, D. A.; Schaefer, H. F., III J. Am. Chem. Soc. 1986, 108, 4344. (b) Sax, A. F.; Kalcher, J. J. Chem. Soc., Chem. Commun. 1987, 809. (c) Nagase, S.; Nakano, M.; Kudo, T. J. Chem. Soc., Chem. Commun. 1987, 60. (d) Yates, B. F.; Clabo, D. A.; Schaefer, H. F., III Chem. Phys. Lett. 1988, 143, 421. (e) Yates, B. F.; Schaefer, H. F., III Chem. Phys. Lett. 1989, 155, 563.

[^1]: (7) (a) Stewart, G. W.; Henis, J. M. S.; Gaspar, P. P. J. Chem. Phys. 1973, 58, 890. (b) Korkin, A. A.; Glukhovtsev, M.; Schleyer, P. v. R. Int. J. Quantum Chem. 1993, 46, 137.
 (8) Jemmis, E. D.; Srinivas, G. N.; Leszczynski, J.; Kapp, J.; Korkin, A. A.; Schleyer, P. v. R. J. Am. Chem. Soc. 1995, 117, 11361.
 (9) (a) Huheey, J. E.; Keiter, E. A.; Keiter, R. L. Inorganic Chemistry, 4th ed.; Harper Collins College Publishers: New York, 1993. (b) Haaland, A.; Martinsen, K.-G.; Schlykov, S. A.; Volden, H. V.; Dohmeier, C.; Schnockel, H. Organometallics 1995, 14, 3116. (c) Loos, D.; Schnockel, H.; Gauss, J.; Schneider, V. Angew. Chem., Int. Ed. Engl. 1992, 31, 1362. (d) Berndt, A. F.; Marsh, R. E. Acta. Crystallogr. 1963, 16, 118.

[^2]: (10) (a) Jemmis, E. D.; Prasad, B. V.; Prasad, P. V. A.; Tsuzuki, S.; Tanabe, K. Proc. Ind. Acad. Sci. (Chem. Sci.) 1990, 102, 107. (b) Jemmis, E. D.; Prasad, B. V.; Tsuzuki, S.; Tanabe, K. J. Phys. Chem. 1990, 94, 5530.
 (11) (a) Wong, K. S.; Haller, K. J.; Dutta, T. K.; Chipman, D. M.; Fehlner, T. P. Inorg. Chem. 1982, 21, 3197. (b) Hoffmann, R. Angew. Chem., Int. Ed. Engl. 1982, 21, 711.
 (12) Hehre, W. J.; Radom, L.; Schleyer, P. v. R.; Pople, J. A. Ab initio Molecular Orbital Theory; Wiley: New York, 1986.
 (13) (a) Hariharan, P. C.; Pople, J. A. Chem. Phys. Lett. 1972, 66, 217. (b) Francl, M. M.; Pietro, W. J.; Hehre, W. J.; Binkley, J. S.; Gordon, M. S.; DeFrees, D. J.; Pople, J. A. J. Chem. Phys. 1982, 77, 3654.
 (14) Møller, C.; Plesset, M. S. Phys. Rev. 1934, 46, 618.
 (15) (a) Becke, A. D. J. Chem. Phys. 1993, 98, 5648. (b) Becke, A. D. Phys. Rev. A 1988, 38, 3098. (c) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785. (d) Vosko, S. H.; Wilk, L.; Nusair, M. Can. J. Phys. 1980, 58, 1200.
 (16) Pople, J. A.; Raghavachari, K.; Schlegel, H. B.; Binkley, J. S. Int. J. Quantum Chem. Symp. 1979, 13, 255.

[^3]: (17) Gaussian 92, Revision A, Frisch, M. J.; Trucks, G. W.; HeadGordon, M.; Gill, P. M. W.; Wong, M. W.; Foresman, J. B.; Johnson, B. G.; Schlegel, H. B.; Robb, M. A.; Replogle, E. S.; Gomperts, R.; Andres, J. L.; Raghavachari, K.; Binkley, J. S.; Gonzalez, C.; Martin, R. L.; Fox, D. J.; DeFrees, D. J.; Baker, J.; Stewart, J. J. P.; Pople, J. A.; Gaussian, Inc.: Pittsburgh, PA, 1992.
 (18) Nagase, S.; Nakano, M. Angew. Chem., Int. Ed. Engl. 1988, 27, 1081.

[^4]: ${ }^{a}$ Distances are in angstroms and angles are in degrees. ${ }^{b} \theta_{1}$ is the angle of deviation of terminal hydrogens from the Si_{3} plane; positive θ_{1}

[^5]: (19) Nagase, S.; Kobayashi, K.; Nagashima, M. J. Chem. Soc., Chem. Commun. 1992, 1302.
 (20) Wiberg, N.; Finger, C. M. M.; Polborn, K. Angew. Chem., Int. Ed. Engl. 1993, 32, 1054.
 (21) The MP2(FC)/6-31G* energy for structure 10 is -1158.23125 au and the zero-point energy is $23.3 \mathrm{kcal} / \mathrm{mol}$.
 (22) Nagase, S.; Kobayashi, K.; Nagashima, M. J. Chem. Soc., Chem. Соттии. 1992, 1302.
 (23) Srinivas, G. N.; Kiran, B.; Jemmis, E. D. J. Mol. Str. (THEOCHEM) 1996, 361, 205.
 (24) Schleyer, P. v. R.; Kaupp, M.; Hampel, F.; Bremer, M.; Mislow, K. J. Am. Chem. Soc. 1992, 114, 6791.

[^6]: (25) (a) Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88 , 899. (b) Weinhold, F.; Carpenter, J. E. The Structure of Small Molecules and Ions; Naaman, R., Vager, Z., Eds.; Plenum: New York, 1988; p 227.
 (26) Jemmis, E. D.; Subramanian, G.; Prasad, B. V.; Tsuzuki, S.; Tanabe, K. Angew. Chem., Int. Ed. Engl. 1993, 32, 865.

[^7]: (27) (a) Maier, G.; Schafer, U. Sauer, W.; Hartan, H.; Matusch, R.; Oth, J. F. M. Tetrahedron Lett. 1978, 1837. (b) Glukhovtsev, M.; Schleyer, P. v. R.; Hommes, N. J. R. V. E.; Minkin, V. Chem. Phys. Lett. 1993, 205, 529.
 (28) The experimental $\mathrm{N}-\mathrm{O}$ and $\mathrm{P}-\mathrm{O}$ distances in various compounds are listed in: Allen, F. H.; Kennard, O.; Watson, D. G.; Bramma, L.; Orpen, A. G.; Taylor, R. J. Chem. Soc., Perkin. Trans. 2 1987, S1-S19.
 (29) The bond lengths (\AA) calculated at the MP2(FC)/6-31G* level-5: $\mathrm{B}-\mathrm{H}=1.194, \mathrm{C}-\mathrm{H}=1.084, \mathrm{~N}-\mathrm{H}=1.021, \mathrm{P}-\mathrm{H}=1.402 \mathrm{P}-\mathrm{O}=1.512$. 6: $\mathrm{B}-\mathrm{H}=1.189, \mathrm{C}-\mathrm{H}=1.081, \mathrm{~N}-\mathrm{H}=1.021, \mathrm{Si}-\mathrm{H}=1.469, \mathrm{P}-\mathrm{H}=$ $1.394 \mathrm{P}-\mathrm{O}=1.517$.
 (30) March, J. Advanced Organic Chemistry, 3rd ed.; Wiley Eastern: New Delhi, 1986.
 (31) Epiotis, N. D. Top. Curr. Chem. 1989, 150, 47.
 (32) (a) Orpen, A. G.; Koetzle, T. F. Acta Crystallogr. B (Str. Sci.) 1984, 40, 606. (b) Jan, D. Y.; Workman, D. P.; Hsu, L. Y.; Krause, J. A.; Shore, S. G. Inorg. Chem. 1992, 31, 5123.
 (33) Casey, C. P.; Widenhoefer, R. A.; Hallenbeck, S. L.; Hayashi, R. K.; Powell, D. R.; Smith, G. W. Organometallics 1994, 13, 1521.

[^8]: (34) Jan, D. Y.; Hsu, L. Y.; Workman, D. P.; Shore, S. G. Organometallics 1987, 6, 1984.
 (35) Shore, S. G.; Jan, D. Y.; Hsu, L. Y.; Hsu, W. L. J. Am. Chem. Soc. 1983, 105, 5923.

